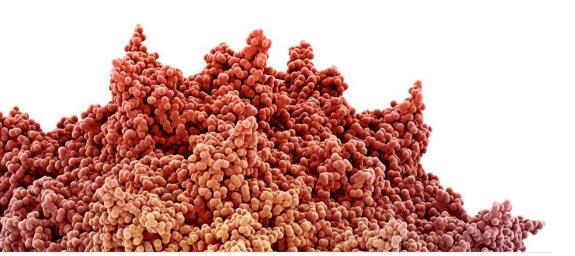


Forward-looking statements

This presentation includes "forward-looking statements," within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended. These statements express a belief, expectation or intention and are generally accompanied by words that convey projected future events or outcomes such as "believe," "may," "will," "estimate," "continue," "anticipate," "assume," "design," "intend," "expect," "could," "plan," "potential," "predict," "seek," "should," "would" or by variations of such words or by similar expressions. The forward-looking statements include statements relating to, among other things, REGENXBIO's proposed collaboration with AbbVie and REGENXBIO's future operations, clinical trials, costs and cash flow. REGENXBIO has based these forward-looking statements on its current expectations and assumptions and analyses made by REGENXBIO in light of its experience and its perception of historical trends, current conditions and expected future developments, as well as other factors REGENXBIO believes are appropriate under the circumstances. However, whether actual results and developments will conform with REGENXBIO's expectations and predictions is subject to a number of risks and uncertainties, including the anticipated completion of REGENXBIO's proposed transaction with AbbVie, the outcome of REGENXBIO's proposed collaboration with AbbVie and other factors, many of which are beyond the control of REGENXBIO. For a summary of certain of these risks and uncertainties, refer to the "Risk Factors" and "Management's Discussion and Analysis of Financial Condition and Results of Operations" sections of REGENXBIO's Annual Report on Form 10-K for the year ended December 31, 2020 and comparable "risk factors" sections of REGENXBIO's Quarterly Reports on Form 10-K for the year ended December 31, 2020 and comparable "risk factors" sections of REGENXBIO's Quarterly Reports on Form 10-K for the year ended December 31, 2020 and comparable "risk factors" sections of REGENXBIO's Quarterly Reports on Form 10-K for the year ended December 31, 2020 and comparable "risk factors" sections of REGENXBIO's Quarterly Reports on Form 10-K for the year ended December 31, 2020 and comparable "risk factors" sections of REGENXBIO's Quarterly Reports on Form 10-K for the year ended December 31, 2020 and comparable "risk factors" sections of REGENXBIO's Quarterly Reports on Form 10-K for the year ended December 31, 2020 and comparable "risk factors" sections of REGENXBIO's Quarterly Reports on Form 10-K for the year ended December 31, 2020 and comparable "risk factors" sections of REGENXBIO's Quarterly Reports on Form 10-K for the year ended December 31, 2020 and comparable "risk factors" sections of REGENXBIO's Quarterly Reports on Form 10-K for the year ended December 31, 2020 and comparable "risk factors" sections of REGENXBIO's Quarterly Reports on Form 10-K for the year ended December 31, 2020 and comparable "risk factors" sections of REGENXBIO (risk factors) and the year ended December 31, 2020 and comparable "risk factors" sections of REGENXBIO (risk factors) and the year ended December 31, 2020 and comparable "risk factors" sections of REGENXBIO (risk factors) and the year ended December 31, 2020 and comparable "risk factors" sections of REGENXBIO (risk factors) and the year ended December 31, 2020 and comparable "risk factors" sections of REGENXBIO (risk factors) and the year ended December 31, 2020 and comparable "risk factors" sections of REGENXBIO (risk factors) and the year ended December 31, 2020 and comparable (risk factors) and the year ended December 31, 2020 and the year ended December 31, 2020 and the year ended Dec have been filed with the U.S. Securities and Exchange Commission (SEC) and are available on the SEC's website at www.sec.gov. All of the forward-looking statements made in this presentation are expressly qualified by the cautionary statements contained or referred to herein. The actual results or developments anticipated may not be realized or, even if substantially realized, they may not have the expected consequences to or effects on REGENXBIO or its businesses or operations. Such statements are not guarantees of future performance and actual results or developments may differ materially from those projected in the forward-looking statements. Readers are cautioned not to rely too heavily on the forward-looking statements contained in this presentation. These forward-looking statements speak only as of the date of this presentation. Except as required by law, REGENXBIO does not undertake any obligation, and specifically declines any obligation, to update or revise any forward-looking statements, whether as a result of new information, future events or otherwise.

Seeking to improve lives through the curative potential of gene therapy


Strategic partnership with AbbVie to develop and commercialize gene therapy treatments for retinal disease

Industry-leading, robust AAV manufacturing and global supply platform

Experienced leaders in gene therapy and drug development

Proprietary NAV® Technology Platform includes exclusive worldwide rights to over 100 AAV vectors, *including AAV7*, *AAV8*, *AAV9* and *AAVrh10*

Strong balance sheet

REGENXBIO's internal pipeline

- AAV-mediated antibody delivery for chronic diseases
- Monogenic gene replacement
 - ▲ Orphan Drug Designation
- ★ Rare Pediatric Disease Designation
- Fast Track Designation

Internal Pipeline

Strategic partnership with AbbVie to develop and commercialize RGX-314, a potential one-time gene therapy for treatment of wet AMD and diabetic retinopathy

Leadership and expertise in AAV and retinal gene therapy

Strong in-house capabilities of AAV manufacturing

Leading eye care company

Global development and commercial infrastructure

Details of Partnership¹

- \$370 million upfront payment with up to \$1.38 billion in additional development, regulatory and commercial milestones
- Collaboration for the development and commercialization of RGX-314 with equal share of profits in U.S. and REGENXBIO to receive royalties outside the U.S.
- REGENXBIO will lead the manufacturing of RGX-314 for clinical development and U.S. commercial supply

RGX–314: Potential best-in-class, one-time gene therapy for treatment of wet age-related macular degeneration (wet AMD)

THE DISEASE

- Blurring of central vision and progressive vision loss due to formation of leaky blood vessels in the eye
- VEGF inhibitors are standard of care to treat fluid and associated vision loss
- Frequency / uncomfortable administration of current anti-VEGF therapies affects compliance and ultimately efficacy
- >2 million patients estimated in U.S., Europe and Japan

RGX-314 PRODUCT CANDIDATE

Vector: AAV8

Gene: anti-VEGF Fab

Mechanism of action

Reducing leaky blood vessel formation by giving retinal cells the ability to produce an anti-VEGF fab

Routes of administration

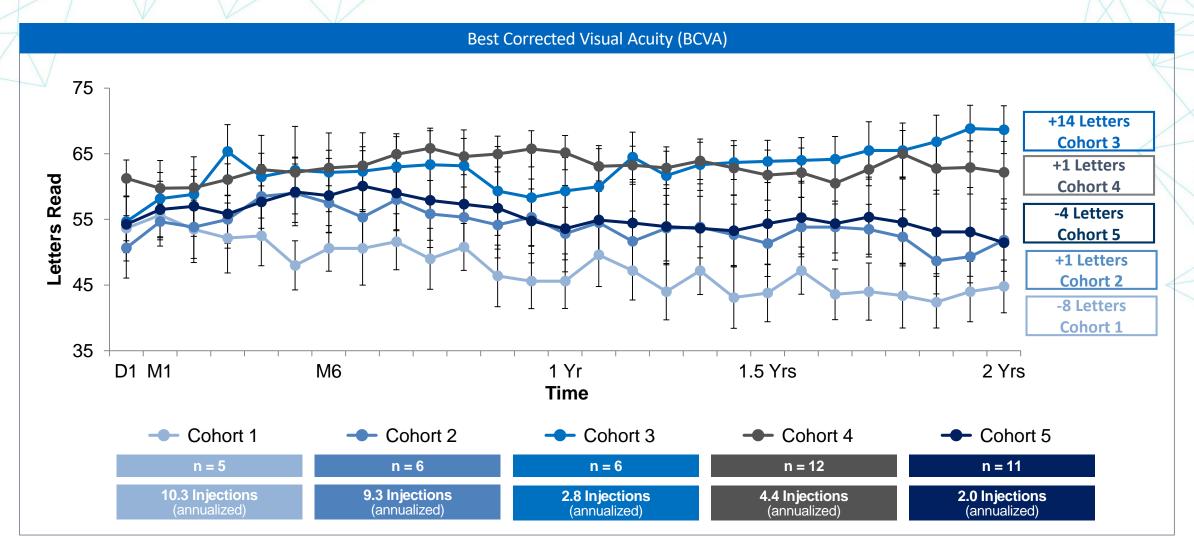
RGX-314 for treatment of wet AMD: Current program status

Phase I/IIa subretinal dose-escalation study

- RGX-314 generally well-tolerated across all doses
- Long-term, durable treatment effect demonstrated over 2 years (Cohorts 4&5)¹ and 3 years (Cohort 3)² post-RGX-314 administration
 - Stable to improved visual acuity and central retinal thickness
 - Meaningful reductions in anti-VEGF injection burden

Subretinal pivotal program is active and expected to support BLA filing in 2024

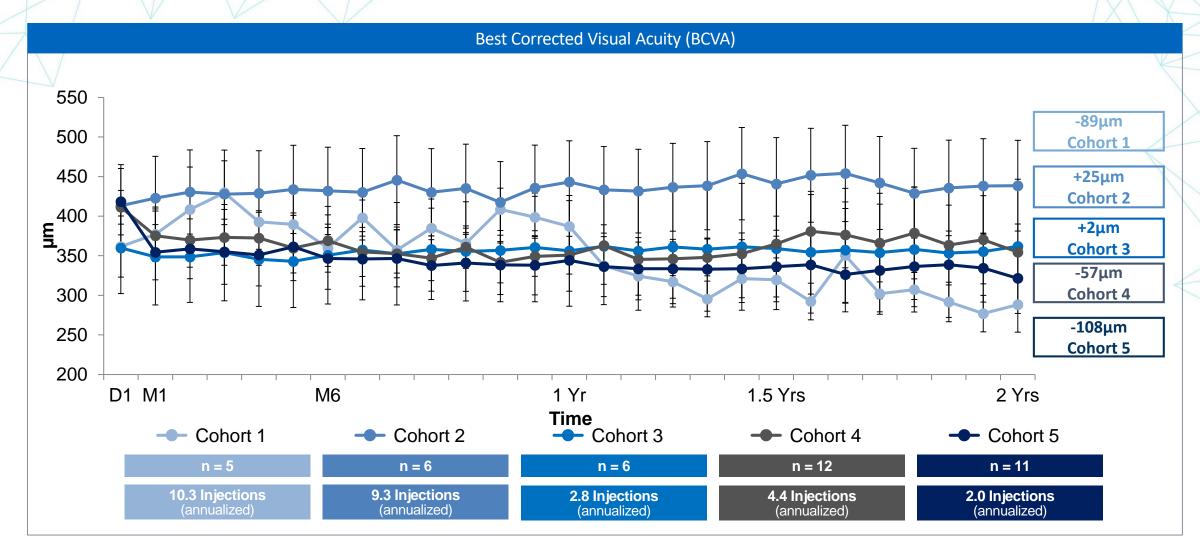
- Pivotal program to enroll a total of approximately 700 patients
- First trial, ATMOSPHERE™, is active and enrolling; a second pivotal trial is planned to initiate in Q4 2021
- cGMP manufacturing process bridging study is active, expected to support BLA filing


Phase II suprachoroidal AAVIATE® trial on-going

- Cohort 1 enrollment complete, interim data to be presented at the Retina Society 54th Annual Scientific Meeting, Sept 29-Oct 2, 2021.
- Cohort 2 enrollment complete, interim data expected in Q4 2021
- Cohort 3 enrollment complete in NAb+ patients

RGX-314 subretinal Phase I/IIa clinical trial:

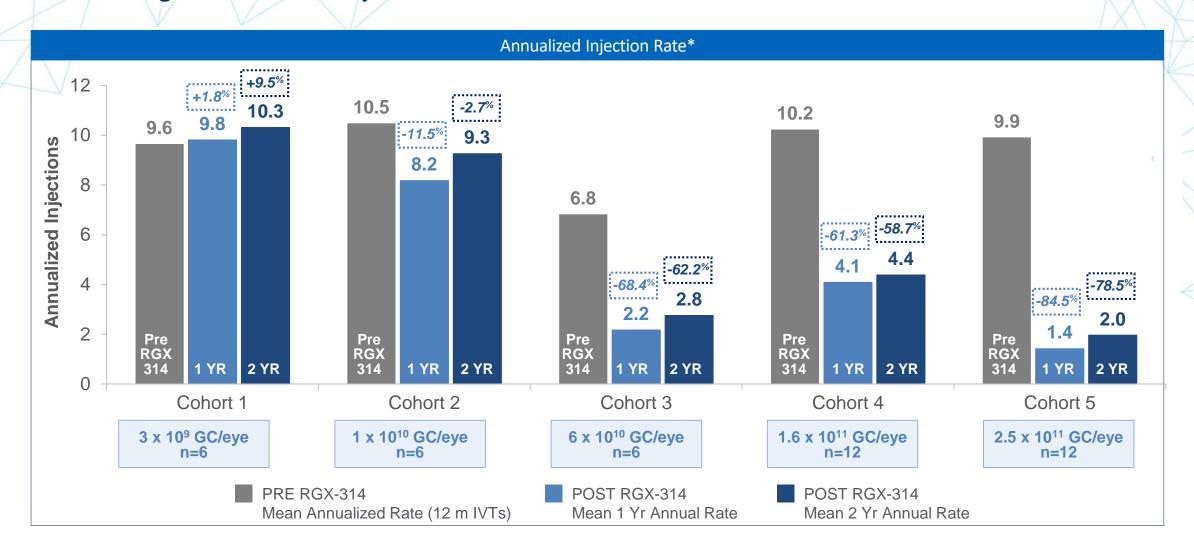
Mean BCVA over 2 years



Note: One patient in Cohort 1 and one patient in Cohort 5 discontinued the study prior to Week 22 visit. Another patient in Cohort 5 has missed the visits due to COVID-19 from Week 50 through Week 74 and from Week 86 through Week 94. For this patient, missing visits were imputed using last observation carried forward (LOCF). Twelve additional missing BCVA results were interpolated.

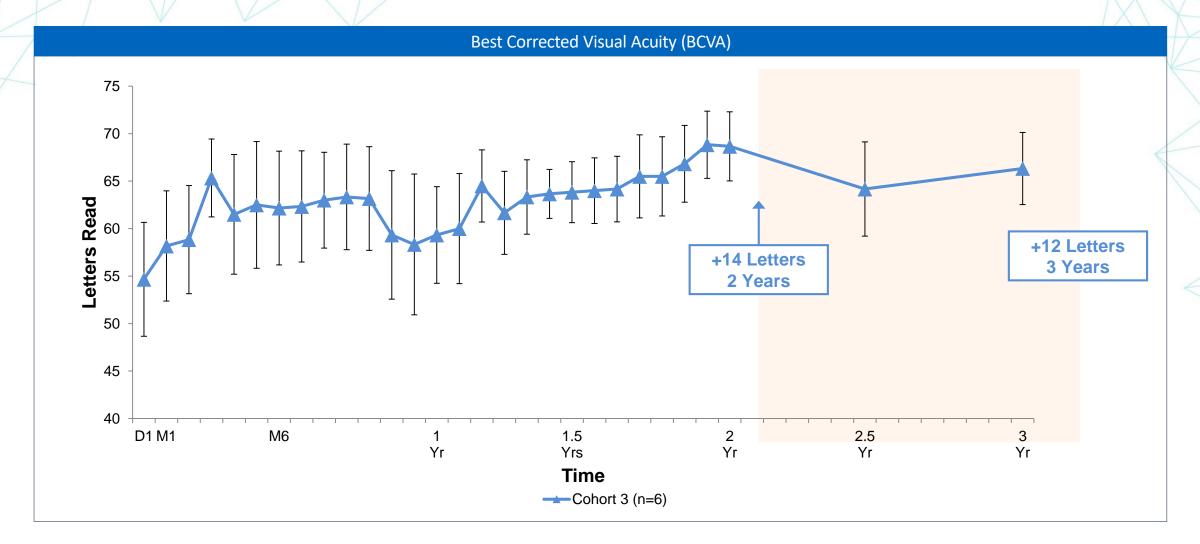
RGX-314 subretinal Phase I/IIa clinical trial:

Mean CRT over 2 years



Note: One patient in Cohort 1 and one patient in Cohort 5 discontinued the study prior to Week 22 visit. Another patient in Cohort 5 has missed the visits due to COVID-19 from Week 50 through Week 74 and from Week 86 through Week 94. For this patient, missing visits were imputed using last observation carried forward (LOCF). Seventeen additional missing CRT results were interpolated.

RGX-314 subretinal Phase I/IIa clinical trial:


Mean Change in Annualized Injection Rate PRE and POST RGX-314 in Cohorts 1–5

RGX-314 subretinal Long-Term Follow-Up* trial:

Mean BCVA over three years in Cohort 3

ATMOSPHERE™ pivotal clinical trial: RGX-314 for wet AMD

Primary

 Non-inferiority in the mean change in BCVA for RGX-314 compared with monthly ranibizumab injection at 1 year

Secondary

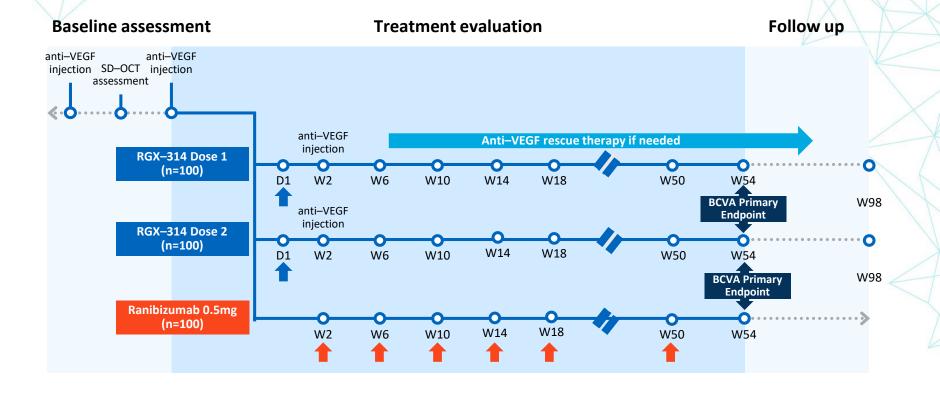
- Safety and tolerability of RGX-314
- Effect of RGX–314 on vision and retinal anatomy
- Additional anti–VEGF injections post-RGX–314

Subjects: approximately 300 total

Route of administration: Subretinal

Sites: Up to 60 leading retinal surgery centers across the

United States



KEY INCLUSION CRITERIA

- Male or female ≥ 50 to 89 years of age
- Previously treated wet AMD subjects requiring anti-VEGF therapy
- Documented response to anti–VEGF at trial entry (assessed by SD–OCT)
- Vision of 20/32 to 20/160
- Pseudophakic (status post cataract surgery)

ATMOSPHERETM pivotal trial design

Administration and follow-up timeline

Arms and Interventions

RGX-314 Dose 1 6.4x10¹⁰ GC/eye

RGX-314 Dose 2 1.3x10¹¹ GC/eye

Ranibizumab Comparator

AAVIATE® Phase II clinical trial: RGX-314 for wet AMD

Primary

 To evaluate the mean change in BCVA for RGX-314 compared with ranibizumab monthly injection at Week 40

Secondary

- Safety and tolerability of RGX-314
- Change in central retinal thickness (CRT) as measured by Spectral Domain Optical Coherence Tomography (SD-OCT)
- Additional anti–VEGF injections post-RGX–314

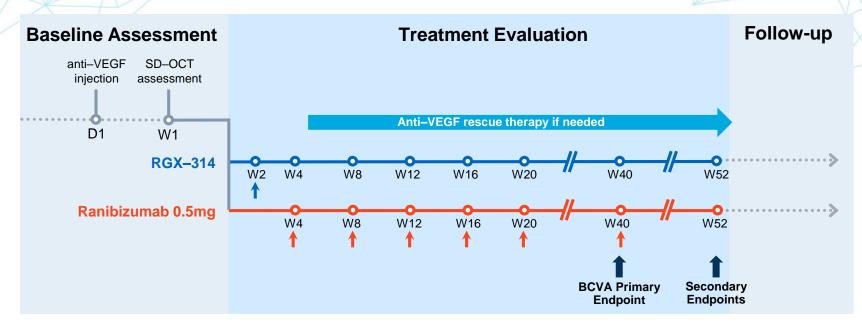
Subjects: Up to 40 total (randomized 3:1)

Route of administration: Suprachoroidal using SCS

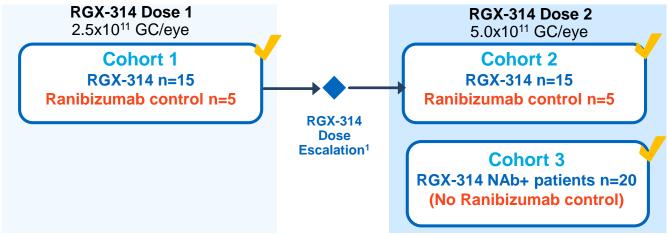
Microinjector

Sites: Fifteen leading retinal centers across the United

States



KEY INCLUSION CRITERIA


- Male or female ≥50 to 89 years of age
- Previously treated wet AMD subjects requiring no more than
 10 anti–VEGF injections in the 12 months prior to trial entry
- Documented response to anti–VEGF at trial entry (assessed by SD–OCT)
- BCVA between ≤ 20/25 and ≥ 20/125 (≤ 83 and ≥ 44 Early Treatment Diabetic Retinopathy Study [ETDRS] letters) in the study eye

AAVIATE® Phase II clinical trial design

Administration and follow-up timeline

Dose escalation

RGX-314 for treatment of Diabetic Retinopathy (DR)

THE DISEASE

- Leading cause of vision loss in adults between 24–75
 years of age; average age of onset is 45-50 years of age
- As disease progresses from non-proliferative DR (NPDR) to proliferative DR (PDR), patients are at increased risk of developing vision threatening complications
- Vision threatening complications include diabetic macular edema (DME) and neovascularization that can lead to blindness
- Approximately 8 million patients estimated in United States alone

RGX-314 PRODUCT CANDIDATE

Vector: AAV8

Gene: anti-VEGF Fab

Mechanism of action

Reducing leaky blood vessel formation by giving retinal cells the ability to produce continuous anti-VEGF fab

Route of administration

ALTITUDE™ Phase II clinical trial in DR

Primary

 Evaluate proportion of patients with ≥2 step improvement in severity on the Diabetic Retinopathy Severity Scale (DRSS) at 48 weeks

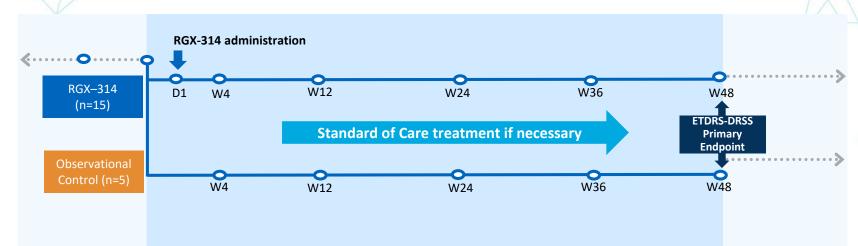
Secondary

- Safety and tolerability of RGX-314
- Development of DR-related ocular complications
- Need for additional standard of care interventions

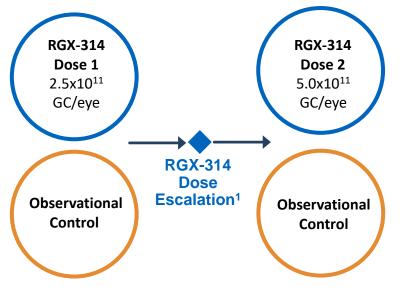
Subjects: Up to 40 total (randomized 3:1)

Route of administration: Suprachoroidal using SCS Microinjector

Sites: Fifteen leading retinal centers across the United States

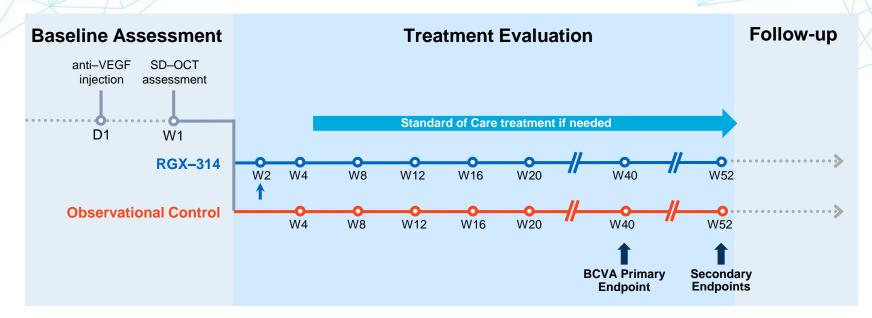

KEY INCLUSION CRITERIA

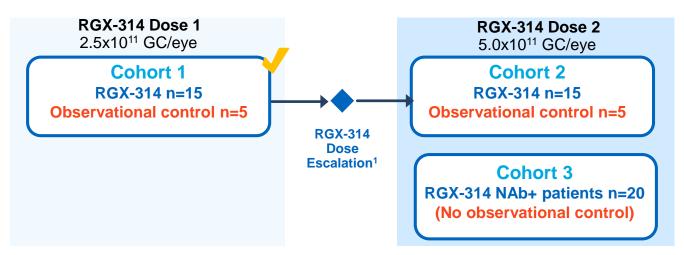
- Male or female ≥ 25 to 89 years of age with DR secondary to diabetes mellitus Type 1 or Type 2
- Moderately severe NPDR, severe NPDR, or Mild PDR
- No active DME, CST < 320 μm
- Vision of 20/40 or better (≥ 69 Early Treatment Diabetic Retinopathy Study [ETDRS] letters) in the study eye


ALTITUDE™ Phase II clinical trial design

Baseline assessment Treatment evaluation Long Term - Follow up

Administration and follow-up timeline


Dose escalation



ALTITUDE™ Phase II clinical trial design

Administration and follow-up timeline

Dose escalation

Cohorts 2 & 3 currently enrolling patients

RGX-202 for treatment of Duchenne Muscular Dystrophy

THE DISEASE

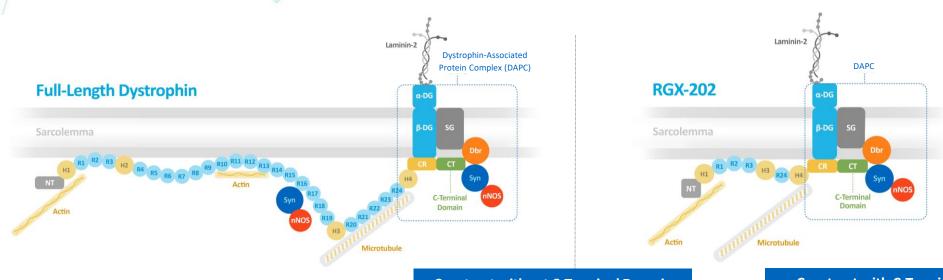
- DMD is caused by mutations in the DMD gene which encodes for dystrophin, a protein involved in muscle cell structure and signaling pathways
- Without dystrophin, muscles throughout the body degenerate and become weak, eventually leading to loss of movement and independence, required support for breathing, cardiomyopathy and premature death
- Affects 1 in 3,500 to 5,000 male births worldwide

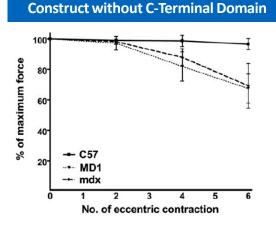
RGX-202 PRODUCT CANDIDATE

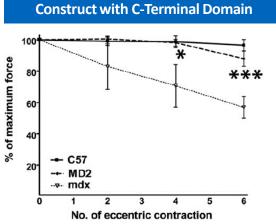
Vector: AAV8

Mechanism of action

Delivers transgene that encodes for novel microdystrophin which includes extended coding region of the C-Terminal Domain


Route of administration




RGX-202 is designed to retain key elements of full-length dystrophin

CT Domain has been shown to recruit several key proteins to the muscle cell membrane (sarcolemma) including Syntrophin and Dystrobrevin, Neuronal nitric oxide synthase and other proteins¹

Presence of CT Domain in microdystrophin significantly improved the muscle resistance to lengthening contraction—induced muscle damage in DMD^{mdx} mice²

¹ Allen et al, *Physiological Review*, 2016

² Koo et al, *Human Gene* Therapy, 2011

RGX-202 program has several features that provide potential benefits

	AAV Capsid	Promoter		Microdystrophin domain design					Transgene Size (bp)	CpG total (# Islands)			
RGX-202	8	Spc5-12	ABD1	H1 R	R2	R3	Н3	R24	H4	CR	СТ	4,734	69 (1)
Other Investigat (Example)	ABD1	H1 R	R2	НЗ	R22	R23	R24	H4	CR				

RGX-202 Features

Potential Benefits

Novel microdystrophin transgene includes extended coding region of dystrophin C-Terminal (CT) Domain

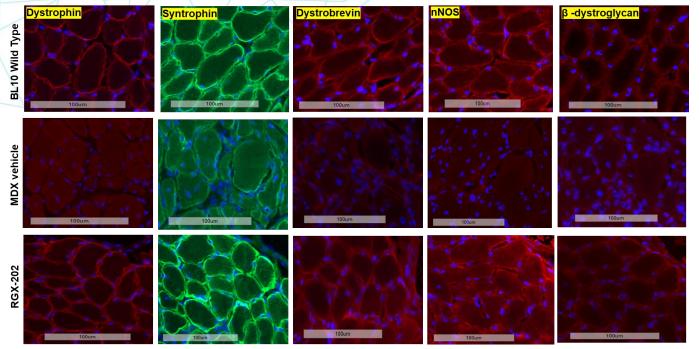
CT domain has been shown to recruit key proteins, leading to improved muscle resistance¹

Codon optimization and CpG content reduction

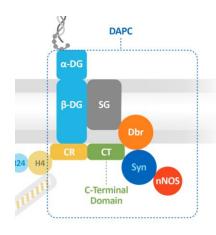
May improve gene expression, increase translational efficiency and reduce immunogenicity²

NAV AAV8 vector and Spc5-12 muscle specific promoter

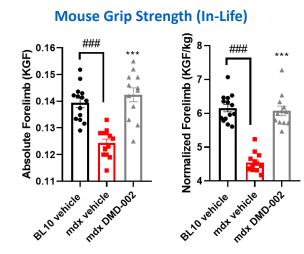
Designed to support the delivery and targeted expression of genes throughout skeletal and heart muscle^{3, 4, 5}


Commercial-scale cGMP material already produced at 1000L capacity

Material expected to be used in clinical trials



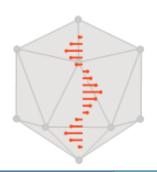
¹ Koo et al, *Human Gene* Therapy, 2011 ² Faust, et al. *Journal of Clinical Investigation*, 2013 ³ Le Guiner, et al. *Nature Communications*, 2017 ⁴ Mack, et al. *Molecular Therapy*, 2017 ⁵ Shieh, et al. ASGCT 2019

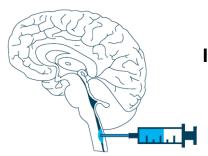

RGX-202 Proof of concept in DMD^{mdx} mouse model

Histological evidence that RGX-202 recruits key proteins to DAPC

Significant strength and force improvements observed in DMD^{mdx} mice treated with RGX-202


Waximal Porce (m/m) 300 - 100


Ex Vivo Force Measurements



ASGCT 2021

REGENXBIO's neurodegenerative disease franchise

Intracisternal Delivery

	RGX-121 for MPS II	RGX-111 for MPS I	RGX-181 for CLN2 Disease	
	 Reduced ability to process glycosaminoglycans (GAGs), leading to neurodegeneration and early death 	 Reduced ability to process GAGs, leading to neurodegeneration and early death 	 Reduced ability to process cellular waste peptides, leading to seizures, vision loss, neurodegeneration and early death 	
	 X-linked recessive disease 	Autosomal recessive disease	 Autosomal recessive disease 	
Disease	 Available treatment is inadequate to treat neurodegeneration More than 500 patients born annually worldwide 	 Available treatment is inadequate to treat neurodegeneration; stem cell transplant partially effective More than 500 patients born annually worldwide 	 Available treatment requires frequent ICV infusions of ERT, shown to stabilize some but not all disease manifestations Approximately 500 patients born annually worldwide 	
Gene	IDS Gene Replacement	IDUA Gene Replacement	TPP1 Gene Replacement	
Designations	 ▲ Orphan Drug Designation ★ Rare Pediatric Disease Designation ► Fast Track Designation 	▲ Orphan Drug Designation★ Rare Pediatric Disease DesignationFast Track Designation	▲ Orphan Drug Designation★ Rare Pediatric Disease Designation	

RGX-121 Phase I/II clinical trial in MPS II

Primary

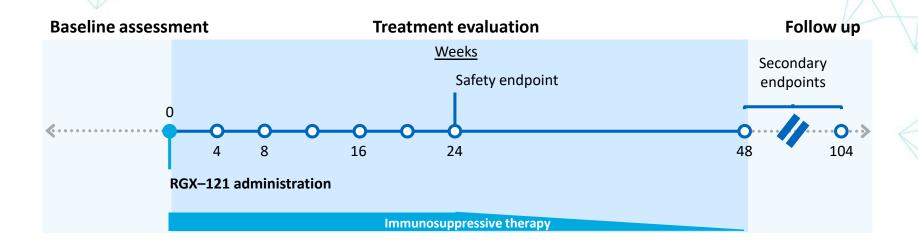
 To determine the safety and tolerability of RGX-121 in severe MPS II subjects who have or are at high risk of developing neurocognitive deficits

Secondary

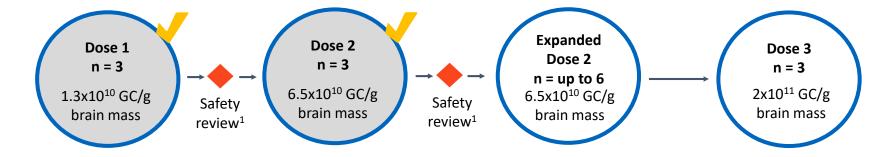
- Effect of RGX-121 on biomarkers of I2S activity in CSF, serum and urine
- Effect of RGX–121 on neurocognitive deficits

Subjects: Approximately 12 patients

Sites: Leading U.S. and international lysosomal storage disease centers



KEY INCLUSION CRITERIA


- Male subjects ≥4 months to <5 years of age</p>
- Meeting one of the following criteria:
 - Diagnosis of MPS II and a score ≤77 on neurocognitive testing
- Diagnosis of MPS II and a decline of ≥1 standard deviation on consecutive intelligent quotient testing
- Having a relative diagnosed with severe MPS II who has the same IDS mutation as the subject
- Having documented mutation(s) in IDS that is known to result in a neuronopathic phenotype
- No contraindications for intracisternal or intracerebroventricular injection and immunosuppressive therapy

RGX-121 Phase I/II clinical trial: Administration and dose escalation

Administration and follow-up timeline

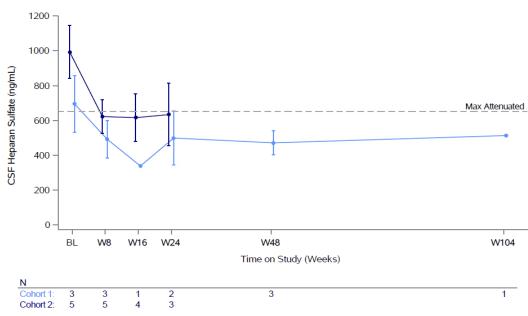
Dose escalation

Dosing in Cohort 3 is ongoing

RGX-121 Phase I/II clinical trial:

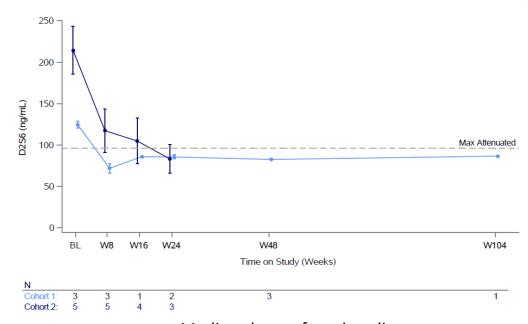
Safety update and Cohorts 1 & 2 data summary¹

- Well-tolerated following one-time RGX-121 administration
 - No drug-related Serious Adverse Events in 9 patients dosed in Cohorts 1-3
- Biomarkers and measures of neurodevelopmental function indicate CNS activity in Cohorts 1 & 2 following RGX-121 administration
 - Reductions in CSF biomarkers up to 2 years after RGX-121 administration
 - Continued cognitive development and language and/or motor skill acquisition observed
- Emerging evidence of systemic I2S protein expression and biomarker activity in Cohorts 1 & 2
 - Increased I2S protein concentration in plasma
 - Rapid reductions in urine biomarker levels observed in ERT²-naïve patients



¹ As announced May 14, 2021

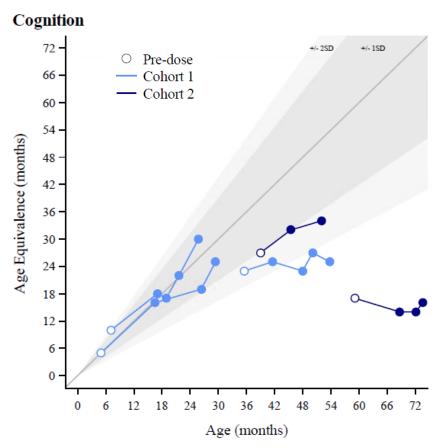
² Enzyme replacement therapy, standard of care for MPS II patients


RGX–121 Phase I/II clinical trial: Reductions in CSF biomarkers up to 2 years after RGX-121 administration¹

Heparan sulfate (HS) in cerebral spinal fluid, % change vs baseline

Median change from baseline: -30.3% at Week 8; -35.0% at last timepoint available (n=8)

HS D2S6 disaccharide in cerebral spinal fluid, % change vs baseline



Median change from baseline: -44.1% at Week 8; -40.4% at last timepoint available (n=8)

RGX–121 Phase I/II clinical trial: Continued cognitive development observed in Cohorts 1 and 2 in patients with >6 months of follow-up¹

Bayley Scales of Infant and Toddler Development, 3rd Edition (BSID-III)

 4 out of 5 subjects with greater than 6 months² of follow-up continued cognitive

¹ Presented at ASGCT on May 14, 2021

 $^{^2}$ 3 of 5 patients enrolled in cohort 2 had \leq 6 months of follow up and are not reported here

RGX-111 Phase I/II clinical trial in MPS I

Primary

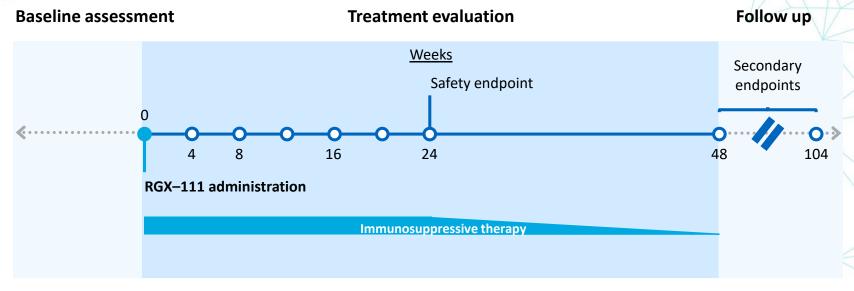
 To determine the safety and tolerability of RGX-111 in MPS I subjects with neurocognitive deficits

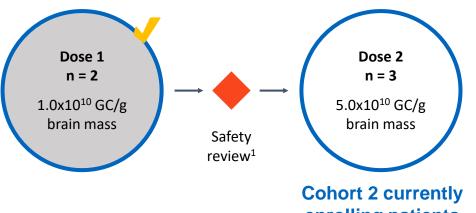
Secondary

- Effect of RGX-111 on biomarkers of IDUA activity in CSF, serum and urine
- Effect of RGX-111 on neurocognitive deficits

Subjects: Up to 5 total

Sites: Leading U.S. and lysosomal storage disease centers


KEY INCLUSION CRITERIA


- Male or female ≥ 4 months of age
- Documented evidence of CNS involvement due to MPS I or documented diagnosis of MPS I
 - A score of ≥1 standard deviation below mean on intelligent quotient testing or in one domain of neuropsychological function
 - A decline of ≥1 standard deviation on sequential testing
 - Having documented biallelic mutation in IDUA predictive of severe MPS I or a relative diagnosed with severe MPS I
- No contraindications for intracisternal or intracerebroventricular injection or immunosuppressive therapy

RGX-111 Phase I/II clinical trial: Administration and dose escalation

Administration and follow-up timeline

Dose escalation

NAV Technology Platform

The NAV Technology Platform is based on a broad and deep IP portfolio

Exclusive rights to more than **100 patents** and **patent applications** worldwide

- AAV7, AAV8, AAV9, AAVrh10
- Over 100 other novel AAV sequences
- Sequences that are at least 95% identical to these capsids

Key features of REGENXBIO's NAV Technology Platform

- Broad and novel tissue selectivity
- Improved manufacturability
- Higher gene transfer
- Longer-term gene expression

Long-Term Safety and Efficacy of Factor IX Gene Therapy in Hemophilia B

Single-Dose Gene-Replacement Therapy for Spinal Muscular Atrophy

REGENXBIO's **NAV Technology Platform** has been widely adopted Multiple clinical stage programs being developed by NAV Technology Licensees across a broad range of therapeutic areas

	Research		Preclinic	al	Phase I /	'II	Phase III / Approved	
	Indication Licensee Indication Licensee		Indication	Licensee	Indication	Licensee		
, ogic	Undisclosed	ultrageny			Hemophilia A	Takeda	OTC Deficiency	y ultrageny
Liver / hematologic					Hemophilia A	ultrageny Bayer	GSDIa	ultrageny
her					Wilson Disease	ultrageny		
E	CDKL5 Deficiency	ultrageny	Rett Syndrome	U NOVARTIS	SMA Type II / III	U NOVARTIS	SMA Type I*	Zolgensma b NOVARTIS
s system	Undisclosed	Lilly	Friedreich's ataxia	Pfizer	Parkinson's w/ GBA & Neuronopathic Gaucher	Lilly	MPS IIIA	LYSGENE SAREPTA
ervou			FTD-GRN	Lilly	MPS IIIA	E STEVE		
Central nervous			Synucleinopathies (GBA + α-Syn RNAi)	Lilly				
Ce			TLE	uniQure				
Cardiac / skeletal muscle					Danon Disease	rocket	XLMTM	≯astellas
Cardiac skeletal muscle					Pompe Disease	astellas		

REGENXBIO Industry leader in AAV production and manufacturing

Deep in-house knowledge of vector characterization and strength in technical operations

3,000 ft² in-house GLP pilot plant with 3 X 200L bioreactor capacity
18,000 ft² of fully-operational advanced manufacturing and analytics lab space
30+ batches of cGMP bulk drug substance product covering multiple programs

Flexible, large-scale cGMP capacity

Candidate selection to clinical material in 12 months

Robust suspension cell culture-based production

Integrated process optimization to enable scale and quality

Analytical capabilities to ensure quality for patients

Key highlights of REGENXBIO's new headquarters

- Corporate, research and manufacturing headquarters open
- cGMP manufacturing facility expected to be operational in H1
 2022; will enable production at bioreactor scales up to 2,000L
- Integrated approach will allow for more efficient development and manufacturing of product candidates

The REGENXBIO team

Name	Position	Prior Affiliations
Ken Mills	President, CEO & Co-Founder; Director	FOXKISER
Olivier Danos, Ph.D.	SVP and Chief Scientific Officer	Biogen
Vit Vasista	SVP and Chief Financial Officer	PRTM (1) (5) (1) °
Steve Pakola, M.D.	SVP and Chief Medical Officer	aerpio @amakem
Curran Simpson	SVP, Chief Operations and Technology Officer	SHuman Genome Sciences
Ram Palanki, Pharm.D.	SVP, Commercial Strategy and Operations	Santen Genentech A Member of the Roche Group
Patrick Christmas, J.D.	SVP, Chief Legal Officer	Lumara Health
Laura Coruzzi, Ph.D., J.D.	SVP, Intellectual Property	JONES DAY.
Shiva Fritsch	SVP, Chief People Officer	NOVAVAX SHuman Genome Sciences

Financial results and guidance

2021 YTD financials as of 6/30/21 (mm)

Revenue:	\$40.9
R&D expense:	\$85.6
G&A expense:	\$36.3
Net loss:	\$107.8
Basic share count:	42.5

2021 YTD financial highlights

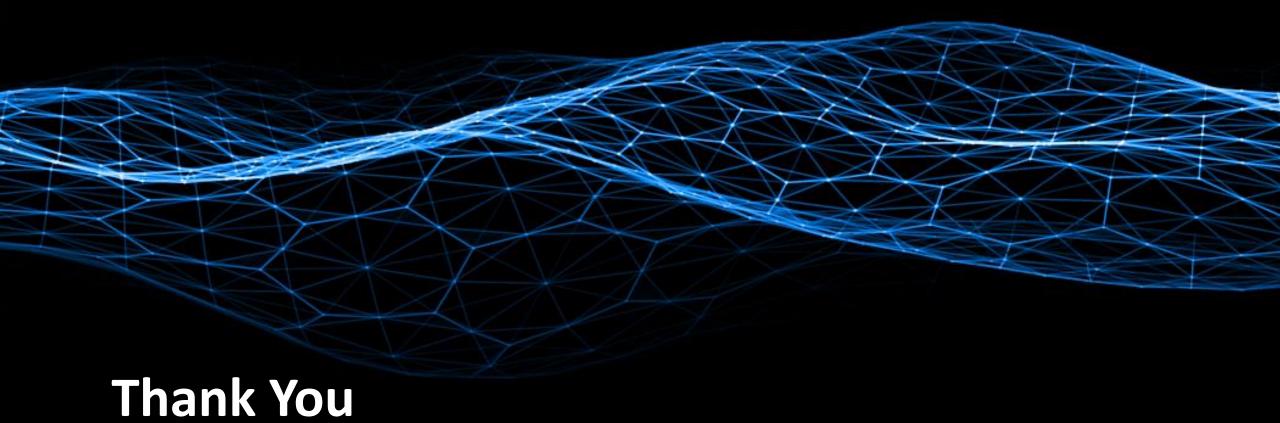
Ended Q2 2021 with \$593.0 million in cash, cash equivalents and marketable securities

Under terms of the partnership with AbbVie¹, REGENXBIO to receive \$370 million upfront payment, with potential to receive up to \$1.38 billion in milestones

Aggregate net proceeds of \$216.1 million received from follow-on offering of common stock completed in January 2021

Program guidance and anticipated milestones

RGX-314	Subretinal wet AMD: ATMOSPHERE™ currently enrolling patients; second pivotal trial to initiate in Q4 2021 Suprachoroidal wet AMD: Interim data from AAVIATE® Cohort 1 to be presented at Retina Society 54 th Annual Meeting (Sept 29-Oct 2); interim data from Cohort 2 expected in Q4 2021 Suprachoroidal DR: Initial data from ALTITUDE™ expected in Q4 2021			
RGX-202 IND submission by end of 2021				
RGX-121	Phase I/II trial in patients up to 5 years old: enrollment ongoing Phase I/II trial in pediatric patients over 5 years old: enrollment ongoing			
RGX-111	Phase I/II trial Cohort 2 enrollment ongoing			
RGX-181	Plan to provide program update in by end of 2021			
RGX-381	Plan to provide program update in by end of 2021			


Financial guidance:

Based on its current operating plan, REGENXBIO expects its balance in cash, cash equivalents and marketable securities of \$593.0 million as of June 30, 2021, to fund its operations, including the completion of its internal manufacturing capabilities and clinical advancement of its product candidates, into the second half of 2023.

¹ As announced on September 13, 2021. The transaction is expected to close in the second half of 2021, subject to the satisfaction of customary closing conditions, including applicable regulatory approvals.

